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Summary

The diffuse presence of robotic subsystems in new space mission concepts intro-
duces variations and uncertainties in system mass and inertia, imposing stringent
constraints to orbital and attitude control. The required performance can be achieved
through several paradigms like robust or adaptive controllers and sometimes a
combination of the two. In this work, a novel indirect controller, belonging to
the robust-adaptive controllers class, is developed, with the core idea of requiring
just one adaptive gain with consequent lower sensitivity and easier tunability. The
algorithm is developed both in centralized and decentralized formulation and tested
for reliability and parameter sensitivity.
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1 INTRODUCTION

Space missions are increasingly becoming more elaborate and are going to require stringent performance in terms of control

and robustness to disturbs and uncertainties, especially due to the presence of inherently variable systems such as robotic arms

and tools1. The concepts of On-Orbit Servicing (OOS), miniaturization, and reusability of space assets are leading a change

of paradigm in the space sector, which demands a even higher level of system autonomy and capability to react and adapt to

different working conditions2. A typical example of such new scenarios is the case of a large carrier spacecraft with the task

to release in different target orbits several passenger satellites3,4: at each release, mass and moment of inertia of the carrier

suddenly change, with the system required to react without losses in pointing accuracy. The concept of OOS, in which a servicer

spacecraft performs different tasks to prolong the lifetime of several target satellites, such as tugging, refueling, station keeping

or even mechanical maintenance, requires the attitude control to be robust to a varying inertia in order to keep the system stable

in all the different maneuvers: the servicer can acts alone or connected with the target, is required to perform complex grasping
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maneuvers to achieve connection, and it needs to handle the satellite stack even during mass transfers like refueling activities.

The requested adaptability can be even greater, in case the properties of the target satellite are not fully known, or the connection

between servicer and target is highly flexible, as it could be in an active debris removal mission5.

From the perspective of industrial application, control laws shall be simpler and less elegant in order to be coded, tuned and

verified with the required standards. Even though there exist several control paradigms that can theoretically achieve extreme

performance, in many cases a simple PID architecture is deemed enough. A good example of optimal controller can be found in

Reference [6] where the inverse optimal control paradigm is used to generate control laws that are optimal with respect to a certain

cost function. In Reference [6] the inverse approach allows to skip the solution of a Hamilton-Jacobi equation. The resulting

control law is complex and dependent on the model used for the synthesis, whereas PID like controllers require few weights

to be set using certain paradigms: a possible way is to use 𝐻∞
7 or 𝜇 synthesis8 to account for uncertainties. The drawback

of robust control is usually an augmented control effort, required to face a determined range of uncertainties. Hence, another

way to face the problem is to use adaptive control theory, where the weights change according to an update law that compares

the system response to a reference model that one wants to track. An example of adaptive control can be seen in Reference [9]

or [10], which incorporates the estimation of the full inertia matrix that may result in excessive computations, especially since

in the adaptive framework the convergence to true values is not guaranteed unless persistent excitation is exerted. Moreover,

the estimation might be corrupted by measurement noises11. The adaptive approach can be extended to a variety of control

paradigms, for example Reference [12] with a straightforward full inertia estimation is set to achieve optimality under the same

premises of Reference [6]. An alternative approach consists in the estimation of the disturbances by a dedicated observer, that

allows the controller to compensate as described in References [13] and [14].

Combining the robust approach and the adaptive approach is not easy but seems the logical answer to the problem. A inter-

esting example of an elegant robust adaptive control can be found in Reference [15] although the tuning issue might presents.

Robust adaptive controllers are generally not model-driven and are designed to face uncertainties or limitations in the control

action16,17,18,19. The structure of the controller in Reference [15] is not conventional although resemble a proportional control:

the problem lies in the variability of performance with the update gains. Several algorithms centered on robustness to actuation

faults were investigated afterwards, often fusing adaptive backstepping and sliding modes20,21,22,23,24,25 or following the origi-

nal premises of Reference [15] like Reference [26]. On the other hand, finite time controllers like References [27,28] can attain

good performance but requires more parameters to tune than Reference [15].

Should be noted that References [15,20,21,26] all suffer from the unwinding phenomena, which does not compromise stability

but lower the performances. In general, we can intend fault tolerance to be tolerance to a certain level of input gain uncertainty

and thus group many fault tolerant control in the greater scheme of control of uncertain systems.
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The proportional feedback controls class is particularly attractive for space applications, for their implementation require

very low computational power, a crucial aspect in a context in which computing capabilities are limited, especially in modern

miniaturized systems. Taking inspiration from Reference [15] in this paper we present a new version of robust adaptive control

which focuses on ease of tunability and predictability of the achievable performances. Such properties are particularly attractive

for the practical implementation of space systems for they shorten development time, and they add strength to the verification

process, a crucial phase of every mission. The version here expounded is tailored to the attitude control, although it can be

extended to a larger class of problems. Since polynomials are involved, one might find a class of controllers resembling the

approach of this paper in References [29,30] where a polynomial control law is determined through convex optimization. The

control law is determined based on the model of the system, whereas here the assumptions on the knowledge of the system are

quite relaxed.

The first major contribution is the theoretical development of the aforementioned controller, validated through extensive sim-

ulations, in which the control structure is simplified to make the tuning dependent on one single hyperparameter. While all

the attractive features of previous works (simple implementation, adaptivity and robustness to failures and uncertainties) are

retained, the tuning process to specific mission requirement is dramatically eased, shortening development activities. Moreover,

the increased predictability of the achievable performances adds strength to the verification process, a crucial phase of the prac-

tical implementation of space missions. The formulation of the proposed algorithm retains sufficient generality to be extended

beyond the original attitude control problem to complex robotic systems typical of the OOS context, although some limita-

tions remains whenever different parts of the system are governed by very different dynamics. Such limitations are overcome

by the second major finding of this work, which is the development of a decentralized version of the controller that can be bet-

ter incorporated in the space robotics problem. Actuation fault and saturation of controls and parameters are also included in

the assessment of a lightweight, robust and easily tunable algorithm. Performances and sensitivity to parameters are assessed

through extensive simulations.

This paper is organized as follows. In Section 2 the attitude control problem, in terms of guidance to attain a certain attitude

and in terms of dynamical response of a satellite angular velocities, is presented, along with its extension to the orbital robot

case. Section 3 then presents the robust adaptive controller built upon the control problem of section 2. Extensive simulations

of spacecraft attitude and robotics control scenarios are shown in Section 4 to highlight the potential of the proposed algorithm,

while conclusions are drawn in Section 5.
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2 PROBLEM FORMULATION

The problem of controlling the attitude of a satellite can be divided in two concentric sub-problems: find the right velocity that

would steer the attitude towards its goal and find the right torque to apply to the system in order to follow such velocity. If the

second loop is faster than the first it is legit to separate the twos and analyze them separately.

This simplification can be accepted in most cases and helps maintaining the simplicity of the controllers and the grasp on the

behavior of the system as a whole. More rigorous results could be achieved using a backstepping method like in References [31,

32], but the resulting controller would be more dependent on the model and have a more complex structure. Hence, here the

separation approach is taken favoring simplicity of the complete control law.

First, the problem of finding the right velocity to be tracked will be briefly addressed, and the dynamical system to be controlled

will be identified. Then, the classic attitude control system will be extended to the orbital robotics case, in which the spacecraft

is distributed across relevant reconfigurable parts (i.e. a robotic arm) that shall be controlled, affecting the overall distribution of

mass and inertia. A typical way to treat the rotational second order system is to use a backstepping procedure6,33,12 leading to a

complete controller, whose convergence cannot be global due to topological obstruction, hence only quasi-global asymptotical

stability is achievable with continuous controllers34,33,35. A similar argument can be made for those controllers that use sliding

modes instead of backstepping16,17,18. In this paper, the focus is put on the controller capabilities to overcome uncertainties and

failures, regardless of the specific guidance law that would effectively track the desired attitude. This way of dealing with the

attitude problem inherently assume full controllability of the system (using a reduced set of actuators would reduce the range of

applicability or neglect it completely).

2.1 Attitude guidance

The attitude of a rigid body needs to be parametrized in order to address the best strategy to achieve the desired pointing.

Historically, quaternions have been used since are better suited to treat unconstrained rotations and are computationally friendly.

Nevertheless, a quaternion 𝐪 is composed by a real scalar part 𝜀 and an imaginary vector part 𝜼 for a total of four elements. To

map onto SO3, one needs to restrain quaternions to lie on the unitary sphere, hence 𝐪𝑇𝐪 = 𝜼𝑇 𝜼+𝜀2 = 1. As a direct consequence

there is a sort of duality where any attitude can be represented by 𝐪 or −𝐪, leading to unwinding phenomena when trying to use

𝐪 in a feedback loop.

Let us express the attitude error computed in controller frame using the error quaternion 𝐪𝑒 and its components 𝜼𝑒 and 𝜀𝑒.

The variation in time of the quaternion components in body axes can be expressed through the angular velocity of the reference

attitude signal 𝝎𝑟 and the current angular velocity of the body 𝝎𝑏 as follows:
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

2�̇�𝑒 = 𝜼𝑒 ×
(

𝝎𝑏 + 𝝎𝑟
)

+ 𝜀𝑒
(

𝝎𝑟 − 𝝎𝑏
)

2�̇�𝑒 = 𝜼𝑇𝑒
(

𝝎𝑏 − 𝝎𝑟
)

(1)

Of the two possible solution families, 𝐪0 that represent null attitude error has 𝜀0 = ±1 and 𝜼0 = 𝟎 with consequent 𝝎𝑏 = 𝝎𝑟.

The ideal angular velocity reference 𝝎𝑏𝑟 that drives 𝐪𝑒 to the null quaternion 𝐪0 is given by:

𝝎𝑏𝑟 = 𝛽𝗌
(

𝜀𝑒
)

𝜼𝑒 + 𝝎𝑟 (2)

with scalar parameter 𝛽 > 0 and 𝗌
(

𝜀𝑒
)

a special function of the scalar element. This can be verified briefly through a simple

Lyapunov analysis using a Candidate Lyapunov Function (CLF) 𝑉𝜀
(

𝐪𝑒
)

that is insensitive to quaternion sign change and is null

for 𝐪𝑒 = 𝐪0:

𝑉𝜀
(

𝐪𝑒
)

= 𝜼𝑇𝑒 𝜼𝑒 = 1 − 𝜀2𝑒 (3)

�̇�𝜀
(

𝐪𝑒
)

= −𝜀𝑒𝜼𝑇𝑒
(

𝝎𝑏 − 𝝎𝑟
)

(4)

𝝎𝑏 → 𝝎𝑏𝑟

�̇�𝜀
(

𝐪𝑒
)

= −𝜀𝑒𝛽𝗌
(

𝜀𝑒
) (

1 − 𝜀2𝑒
)

(5)

from which we can derive condition on 𝗌
(

𝜀𝑒
)

: �̇�𝜀
(

𝐪𝑒
)

< 0 ∀𝐪𝑒 ⇐⇒ 𝗌
(

𝜀𝑒
)

𝜀𝑒 > 0 ∀𝜀𝑒 ∈ [−1, 1]. There is no continuous and

limited function that can satisfy this property, hence we must use a discontinuous function that might introduce chattering or a

discrete function updated using a threshold35. The first is a modified sign function:

𝗌
(

𝜀𝑒
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝜀𝑒 ≥ 0

−1 𝜀𝑒 < 0
(6)

while the second has 𝗌
(

𝜀𝑒
)

→ 𝗌
(

𝜀𝑒,𝑧
)

= ℎ𝑧 with discrete update given in Eq. (7), initial condition ℎ0 = 1 and a positive 𝛿 that

sets a trade-off between robustness to noise and unwinding35:

ℎ𝑧+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ𝑧 𝜀𝑒,𝑧ℎ𝑧 ≥ −𝛿

−ℎ𝑧 𝜀𝑒,𝑧ℎ𝑧 < −𝛿
(7)

The difference is noticeable only near 𝜀𝑒 = 0 where it has been shown that (7) outperforms (6)35. In both cases we have
|

|

|

𝗌
(

𝜀𝑒
)

|

|

|

= 1 with |⋅| the absolute value of its argument. From this and the unitary condition follows that ‖
‖

𝝎𝑏𝑟
‖

‖

≤ 𝛽 + ‖

‖

𝝎𝑟
‖

‖

.
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2.2 Attitude dynamics

The attitude dynamics of a satellite can be represented by the Euler’s equations expressed in a frame fixed with the rotating body

as follows:

�̇�𝑏 = −I−1𝑏 ̇I𝑏𝝎𝑏 − I−1𝑏 𝝎𝑏 × I𝑏𝝎𝑏 + I−1𝑏 𝚪𝝉𝑢 + I−1𝑏 𝝉𝑑 (8)

where I𝑏 and 𝝎𝑏are respectively the inertia tensor and the angular velocities expressed in body frame. External torques are

divided in control 𝝉𝑢 and disturbance 𝝉𝑑 torques. The term ̇I𝑏 takes into account geometrical variation of the system caused, for

example, by a robotic appendage or fuel sloshing. Matrix 𝚪 map the actuators’ action on the system’s degrees of freedom, and

can include gains, actuator misplacement and other disturbs in the actuation line. In general it acts as the mapping between the

commanded control action and the effective action applied to the system, and it depends on the specific system architecture. For

example it can include the misalignment of a reaction wheel meaning that the control torque on one axis will have minor effects

on another axis. In case of failure of one actuator, the mapping will be set to zero not allowing the intended control torque to

reach the system. It is possible to use a simplified notation by setting the state of the system 𝒙 equal to the angular velocity

vector 𝝎𝑏 and grouping together terms as follows:

�̇� = 𝑨𝒙 + 𝑩𝝉𝑢 + 𝑔 (𝒙) + 𝒅 (9)

where the matrix 𝑩 is the linear mapping between the control action and system dynamics. Such matrix is defined as the product

of a positive definite matrix and the matrix 𝚪 which in general is time dependent and non-symmetric:

𝑩 = I−1𝑏 𝚪 (10)

In Eq. (9) it has been set 𝑨 = −I−1𝑏 ̇I𝑏 and 𝑔 (𝒙) = −I−1𝑏 𝝎𝑏 × I𝑏𝝎𝑏. These are respectively the linear dependency of the state

dynamics from the state vector and the general non-linear state dependent contribution to the system dynamics. Going back to

the actuation mapping, we can further specify 𝚪 also in case of redundant actuation as follows:

𝚪 = 𝑯𝒖𝚪𝚪𝑛𝑯𝚪𝒖 (11)

where we have introduced 𝑯𝒖𝚪 as the linear map that convert the input of a set of 𝑛 actuators into the dynamical system. On the

other hand, 𝑯𝚪𝒖 is the matrix that maps the desired control action to a signal for each actuator and is commonly taken by control

designers as the pseudoinverse of 𝑯𝒖𝚪 which is architecture/hardware dependent. 𝚪𝑛 can be seen as the matrix that takes into

account faults in actuators: in nominal conditions 𝚪𝑛 = 𝕀𝑛×𝑛 where 𝑛 is the number of actuators. In case of complete fault of the
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𝑖th actuator, the Γ𝑛 𝑖 element on the matrix diagonal is set to zero; partial degradation of the actuation action can be modeled

with 0 < Γ𝑛 𝑖 < 1.

To better view the tracking problem, let us reason in terms of error 𝒆 seen as the difference between a reference 𝒓 and the

state, 𝒆 = 𝒓 − 𝒙, from which we can also compute error derivative with respect to time:

�̇� = �̇� − 𝑩𝝉𝑢 −𝑨𝒙 − 𝑔 (𝒙) − 𝒅 (12)

Real satellite control must be designed taking into account different non-ideal conditions, among those we have control

saturation, actuation fault, digital implementation, navigation errors, etc.

The non linear term 𝑔 (𝒙) has substantial influence when the reference angular velocity is non-zero and can cause divergence

in simple control laws for higher errors. It can be shown that its gross influence depends on the error and its square as follows:

‖𝑔 (𝒙)‖ ≤
√

2 ‖‖
‖

I−1‖‖
‖𝐹

‖I‖𝐹
(

‖𝒓‖2 + ‖𝒆‖2 + 2 ‖𝒓‖ ‖𝒆‖
)

(13)

where it has been used the L2 vector norm ‖⋅‖ and the Frobenius norm ‖⋅‖𝐹 to maximize its influence. A similar consideration

has been used in Reference [15] in terms of state vector norm. The optimal reference velocity that drives the attitude error to

zero is given in Eq. (2), hence 𝒓 = 𝝎𝑏𝑟 and ‖𝒓‖ ≤ 𝛽 + ‖

‖

𝝎𝑟
‖

‖

, thus if we limit the maximum ‖

‖

𝝎𝑟
‖

‖

we limit also ‖𝒓‖.

2.3 Extension to space robotic problem

The dynamics presented in Sec. 2.2 describing a rigid body subject to control and disturbance toques, and to inertia variations,

can be extended to include large, reconfigurable appendages capable to be controlled. A relevant example of such system is an

orbital robot where a base satellite whose attitude can be described by quaternion 𝐪𝑏 and angular velocity 𝝎𝑏 which carries a

robotic manipulator with revolute joints state 𝝑. The model in this case would be:

⎡

⎢

⎢

⎢

⎣

𝑴𝝑𝝑 𝑴𝝑𝐪

𝑴𝐪𝝑 𝑴𝐪𝐪

⎤

⎥

⎥

⎥

⎦

𝑑
𝑑𝑡

⎧

⎪

⎨

⎪

⎩

�̇�

𝝎𝑏

⎫

⎪

⎬

⎪

⎭

= 𝒅
(

𝝑, �̇�,𝝎𝑏,𝐪𝑏
)

+ 𝒖 (14)

where in matrix 𝑴𝐪𝝑 and its transpose 𝑴𝝑𝐪 are considered all terms that provide direct coupling between the base motion and

the arm motion. The model can be directly adopted to formulate a control in a centralized fashion. Nevertheless, such type of

control, for example based on the generalized Jacobian principle36 or similar free floating algorithms, requires a very detailed

knowledge of the system, and possibly other methods to increase robustness: couplings between system parts are non constant

in time, and joints on manipulators are usually controlled in a decentralized way. Hence, the practical realization of such a

control can be hard to achieve. On the other way round, a decentralized formulation would allow to attain good performance, still

maintaining a certain ease of formulation by breaking down the system into manageable subproblems which are only weakly
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related to each other and can be solved independently37,38. This is particularly evident in the case in which different parts of the

systems are characterized by very different dynamics, i.e. in case of very different moment of inertia, like the case of a robotic

manipulator attached to a much more massive main body.

In the following Section, a new indirect robust adaptive controller is formulated in both centralized and decentralized version.

3 CONTROL FORMULATION

3.1 Feedback control

Taking into account the passivity considerations of the attitude control problem39, a proportional velocity feedback control law

is the simplest that can be implemented. Velocity-free controllers are not considered here. Taking into account a feedforward

term for a generic time varying reference signal we have the following control law:

𝝉𝑢 = 𝑲 (𝝀 � 𝒆 + �̇�) (15)

where 𝝀 is a vector of cutoff frequencies for the angular velocity loop, � denotes the Hadamard product, and 𝑲 is the feedback

proportional gain matrix whose generic component is indicated with 𝑘𝑖. 𝑲 can be determined to enforce 𝑩𝑲 to be positive

definite, however this might be subject to uncertainties in the determination of 𝑩 or its changes during the mission. In dynamical

inversion controllers we have 𝑲 ≃ 𝑩−1 and thus �̇� = −𝝀� 𝒆−𝑨𝒙− 𝑔 (𝒙) − 𝒅 which is asymptotically converging to zero only

on special cases and with no disturbances. Since terms due to inertia variation and non linear cross coupling depends on the

state, this control law is not able to guarantee convergence in all the error space. In fact, taking the following CLF:

𝑉𝝎0
(𝒆, 𝒙) = 1

2
𝒆𝑇 𝒆 (16)

we have a derivative that is:

�̇�𝝎0
(𝒆, 𝒙) = − 𝒆𝑇𝝀 � 𝒆

⏟⏞⏟⏞⏟
≥0

−𝒆𝑇 (𝑨𝒙 + 𝑔 (𝒙) + 𝒅) (17)

which in general is not always negative definite. The only thing that we can assume about the disturbing terms is some sort of

upper limit in the magnitude. In fact, exogenous disturbances to a spacecraft attitude are mainly due to atmospheric drag (if the

satellite is in low Earth orbit), solar radiation pressure, magnetic field interaction with satellite dipole and non uniformity of

the gravity field. Since such disturbance torques depend on the interaction of the external environment with inherently limited

features of the spacecraft (ballistic coefficient, velocity, residual electric dipole, and moment of inertia), it is reasonable to assume

them as bounded40. For what concern endogenous disturbances, they arise mainly due to effect such as actuators imprecision
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or misalignment, the presence of flexible appendages, fuel sloshing, mass depletion due to fuel consumption, and moving parts.

Most of these quantities are characterized before launch, with mass and vibration tests. Several empirical models are commonly

adopted to characterize sloshing as well41,42, while effects like mass depletion and moving parts are limited by the performance

of propulsion systems and robotic masses and actuators. Hence, we can reasonably assume that 𝒅 has bounded modulus, ‖𝑨‖𝐹 is

upper bounded, and that the reference signal and its derivative are bounded. The latter poses limits to attitude tracking, basically

putting an upper limit on the bandwidth of the complete controller.

The controller presented in Reference [15] is the most prominent controller of the proportional velocity feedback control class

and was used here as a starting point to deliver a novel adaptive robust controller that guarantees stability, performance and is

easy to tune.

In Reference [15] 𝑲 = 𝑘𝕀3×3 where the scalar variable 𝑘 is updated through a non straightforward but Lyapunov stable law

function of the norm of the state and the error. The control law is summarized in Eq. (18) with a little modification from the

original implementation to take into account 𝝀 and the feedforward �̇�, and a slightly modified notation to uniform to convention

adopted in this work:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝝉𝑢 = 𝑘 (𝝀 � 𝒆 + �̇�) , 𝑘 =
(

𝜐0 + 𝛿𝜐
)

𝛿𝜐 =
�̂�Φ

‖𝒆‖+𝜖
, Φ = 1 + ‖𝒙‖ + ‖𝒙‖2

̇̂𝑏 = −𝜎1�̂� + 𝜎2
‖𝒆‖2Φ
‖𝒆‖+𝜖

, 𝜖 = 𝜇
1+Φ

(18)

where 𝛿𝜐, �̂�, and Φ are intermediate quantities with no physical meaning, designed to achieve a self stiffening controller

that guarantees bounded convergence15. In spite of this very attractive feature, the implementation is not straightforward, as it

depends by the tuning of the three independent parameters
(

𝜎1, 𝜎2, 𝜇
)

> 0 that might cause a lack of robustness with respect to

the gains. On the other hand, the main feature of this algorithm is the error convergence to a very small boundary that depends

mainly on the combination of parameters and upper boundaries on the disturbing terms as previously explained.

The controller of Eq. (18) will be referred to as Indirect Robust Adaptive Control (IRAC) for any following reference.

3.2 Centralized robust controller

In order to avoid gain sensitivity it is possible to derive a similar controller adopting a simplified structure, with the advantage

that only one parameter is left to be tuned. Let us take a centralized controller with scalar proportional term 𝑘 as follows:
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𝝉𝑢 = 𝑘 (𝝀 � 𝒆 + �̇�) (19)

𝑘 = (‖𝒆‖ + 1) 𝑓 (20)

Then take the CLF15:

𝑉1 (𝒆, 𝑓 ) =
1
2
𝒆𝑇 𝒆 + 1

2𝛾𝑟ℎ
(𝐶 − ℎ𝑓 )2 (21)

where 𝐶 is a finite positive constant scalar entity that must satisfy few conditions that will be introduced later. 𝑓 is a time varying

positive parameter, 𝛾𝑟 > 0 a constant, and ℎ > 0 is the minimum influence of the control torques to the system.

Let us derive w.r.t. time (21) and substitute (12) and (19):

�̇�1 (𝒆, 𝑓 ) = − 𝑘𝒆𝑇𝑩diag (𝝀) 𝒆 + (𝐶 − ℎ𝑓 )
(

−
̇𝑓

𝛾𝑟

)

+ 𝒆𝑇
((

𝕀3×3 − 𝑩𝑘
)

�̇� −𝑨𝒙 − 𝑔 (𝒙) − 𝒅
)

(22)

Then we substitute the relation between 𝑘 and 𝑓 of (20) and determine a scalar valued function greater than the CLF derivative

as follows.

�̇�1 (𝒆, 𝑓 ) ≤ −
(

‖𝒆‖2 + ‖𝒆‖3
)

ℎ𝑓 + (𝐶 − ℎ𝑓 )
(

−
̇𝑓

𝛾𝑟

)

+ ‖𝒆‖ ‖‖
‖

(

𝕀3×3 − 𝑩𝑘
)

�̇� −𝑨𝒙 − 𝑔 (𝒙) − 𝒅‖‖
‖

(23)

In Eq. (23) we have taken the highest possible value for the scalar products of disturbing elements and the minimum control

influence over the CLF derivative.

For the latter it has assumed that exists a ℎ such as 𝒆𝑇𝑩diag (𝝀) 𝒆 > ℎ ‖𝒆‖2. This is always true for a positive definite matrix

(symmetry is not required, this poses some limits on 𝝀). ℎ constitutes de facto the minimum influence of the controller onto

the system and it is closely related to the controllability of the system. The only requirement for this proof is that ℎ is a strictly

positive value, which implies that the system must be controllable. A simple example of this would be a case where 𝚪𝑛 of Eq. (11)

has rank lower than three: there are not enough actuators to fully control the system and ℎ would be null. Same effect would be

caused by inverted signs in the actuators, where ℎ would be negative and the controller would not be able to recover.

A term for sure larger than the disturbing components can be also found, leaving a direct dependency on ‖𝒆‖:
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�̇�1 (𝒆, 𝑓 ) ≤ −
(

‖𝒆‖2 + ‖𝒆‖3
)

ℎ𝑓 + (𝐶 − ℎ𝑓 )
(

−
̇𝑓

𝛾𝑟

)

+ 𝐶1 ‖𝒆‖ + 𝐶2 ‖𝒆‖
2 + 𝐶3 ‖𝒆‖

3 (24)

where the coefficients 𝐶1, 𝐶2 and 𝐶3 are given by:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶1 = ‖�̇�‖M + ‖𝑨‖𝐹 ‖𝒓‖M + 𝐶3 ‖𝒓‖
2
M + ‖𝒅‖M

𝐶2 = ‖𝑨‖𝐹 + 2𝐶3 ‖𝒓‖M

𝐶3 =
√

2 ‖‖
‖

I−1‖‖
‖𝐹

‖I‖𝐹

(25)

where with ‖⋅‖M is intended the maximum value the norm of the argument can take. It is possible to increase the second and

third order disturbs as follows:

𝐶
(

‖𝒆‖ + ‖𝒆‖2 + ‖𝒆‖3
)

>ℙ3
𝐶 (‖𝒆‖) (26)

ℙ3
𝐶 (‖𝒆‖) =𝐶1 ‖𝒆‖ + 𝐶2 ‖𝒆‖

2 + 𝐶3 ‖𝒆‖
3 (27)

where ℙ𝑛
𝑖 (‖𝒆‖) represent the polynomial 𝑖 of order 𝑛 in the scalar abscissa ‖𝒆‖. This relation becomes de facto the definition of

the constant 𝐶 , implying 𝐶 ≥ 𝐶1, 𝐶 ≥ 𝐶2, and 𝐶 ≥ 𝐶3.

This leads to:

�̇�1 (𝒆, 𝑓 ) ≤𝐶 ‖𝒆‖ + (𝐶 − ℎ𝑓 )
(

‖𝒆‖2 + ‖𝒆‖3
)

+ (𝐶 − ℎ𝑓 )
(

−
̇𝑓

𝛾𝑟

)

(28)

̇𝑓 can be expanded as in Eq. (29), in this case the second and third order effects would be removed but no conclusion on the

CLF derivative sign can be made as it would be generally lower than 𝐶 ‖𝒆‖.

̇𝑓 = 𝛾𝑟
(

‖𝒆‖2 + ‖𝒆‖3
)

(29)

This deviation was intended to show the definition of 𝐶 that lead to Eq. (29). Going back few steps and leaving second and

third order terms leads to a different conclusion: substituting (29) in (24) leads to
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�̇�1 (𝒆, 𝑓 ) ≤ℙ3
1 (‖𝒆‖) (30)

ℙ3
1 (‖𝒆‖) =𝐶1 ‖𝒆‖ +

(

𝐶2 − 𝐶
)

‖𝒆‖2 +
(

𝐶3 − 𝐶
)

‖𝒆‖3 (31)

which is a third order polynomial with second and third order coefficients lower or equal to zero. It has only two admissible

roots, ‖𝒆‖1 = 0 and ‖𝒆‖2 > 0. For any ‖𝒆‖ > ‖𝒆‖2 we will have �̇�1 (𝒆, 𝑓 ) < 0.

FIGURE 1 Lyapunov functions derivatives. The upper boundary of CIRAC �̇�1, ℙ3
1 (‖𝒆‖), is denoted in blue, red marks the

derivative of a saturation control. The theoretical development of controllers does not take into account saturation: in real systems
stability is limited by the available control authority, and the actual trend of the CLF derivative is the maximum of the two
curves, highlighted by the green envelope. In light blue the trend of ℙ3

1 (‖𝒆‖) as 𝑓 increases is also shown.

In conclusion, this modification requires to tune only one gain 𝛾𝑟. Figure 1 shows in blue the trend ofℙ3
1 (‖𝒆‖)which constitutes

the upper boundary for the CLF derivative �̇�1. It can be seen how the error space can be divided in 𝑈1 =
[

‖𝒆‖1 , ‖𝒆‖2
]

where

derivative of 𝑉1 (𝒆, 𝑓 ) can be positive and a region 𝑈2 =
[

‖𝒆‖2 , ∞
)

where the derivative is always negative. Since in 𝑈2 we have

�̇�1 (𝒆, 𝑓 ) < 0 we can conclude that both 𝒆 and 𝑓 are limited. This behavior identifies a Uniform Ultimate Boundedness (UUB)

convergence of controller (19) – (20) with update (29). For simulations, this controller will be indicated as Centralized Indirect

Robust Adaptive Control (CIRAC).

In practice, control saturation imposes an upper threshold of convergence for reference tracking. The red curve in Figure 1

denotes the saturation curve, referred to a controller that outputs always the maximum torque with the proper sign: 𝝉𝑢 =

𝑢msign (𝒆) with 𝑢m = ‖

‖

𝝉𝑢‖‖M. Such relation sets the theoretical highest action a real controller can provide, and its more evident

practical consequence is that there exists an error upper boundary ‖𝒆‖𝑠3 beyond which the real controller will not be able to
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recover, due to the limited available control authority. The overall behavior of a real controller would follow the maximum of

the two curves, highlighted by the green envelope in the figure.

A possible drawback in this type of controller is the problem of gain saturation. As it is clear from (29), the parameter 𝑓 can

only grow in time and with a train of reference step functions it would saturate. A possible addition is a negative bias in (29)

that would lower the value of 𝑓 if the error goes below a certain threshold ‖𝒆‖M.

̇𝑓 = 𝛾𝑟
(

‖𝒆‖2 + ‖𝒆‖3
)

− 𝛾𝑟
(

‖𝒆‖2M + ‖𝒆‖3M
)

(32)

This does modify ℙ3
1 (‖𝒆‖) by a zero order term (𝐶 − ℎ𝑓 )

(

‖𝒆‖2M + ‖𝒆‖3M
)

that can be considered a translating term for

ℙ3
1 (‖𝒆‖). Such term lowers the higher 𝑓 becomes, and there is a theoretical value 𝑓 for which �̇�1

(

𝒆, 𝑓
)

< 0 ∀𝒆. This theoretical

value does not take into account saturation. If 𝑓 grows it will reach inevitably a value for which ‖𝒆‖ < ‖𝒆‖M and its update

would change sign; the velocity error settles approximately around ‖𝒆‖M. In Figure 1, in light blue, it is possible to appreciate

the vertical translation due to 𝑓 and the consequent reduction of ‖𝒆‖2. This is intuitive as the increase in rigidity would reduce

the final error bound.

The term ℎ𝑓 would then theoretically settle at a value which is function of ℙ3
𝐶

(

‖𝒆‖M
)

and ‖𝒆‖M as in the following equation:

ℎ𝑓 |end ≃
ℙ3
𝐶

(

‖𝒆‖M
)

‖𝒆‖2M + ‖𝒆‖3M
(33)

The order of magnitude of the controller gain 𝛾𝑟 can be roughly determined by settling the mean speed of update and the

expected plausible errors.

3.3 Decentralized robust controller

The previous centralized control can be adapted to work decentralized with few modifications. Let us take the control action to

be:

𝝉𝑢 = 𝒌 � (𝝀 � 𝒆 + �̇�) (34)

𝒌 = |𝒆| � 𝒇 + 𝒇 (35)

where it has been used |⋅| as the element-wise absolute value operator, such that all components of |𝒆| are positive. In this

specific case it has been used 𝒌 to indicate a column vector made by three different 𝑘𝑖. A new CLF is determined from 𝑉1 (𝒆, 𝑓 )

with minor modification to comply with the increased dimension of 𝑓 as:
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𝑉2 (𝒆, 𝒇 ) =
1
2
𝒆𝑇 𝒆 + 1

2𝛾𝑟ℎ
(𝐶𝟏 − ℎ𝒇 )𝑇 (𝐶𝟏 − ℎ𝒇 ) (36)

where with 𝟏 we have denoted the vector made of ones on every axis. It is equivalent to state that each component of 𝒇 should

update according to a single 𝐶 that is defined for the whole system. Then, substituting Eq. (34) and Eq. (35) and upper bounding

the derivative of 𝑉2 (𝒆, 𝒇 ) like in the previous case leads to:

�̇�2 (𝒆, 𝒇 ) ≤ − ℎ𝒆𝑇 diag (𝒇 ) 𝒆 − ℎ𝒆𝑇 (𝒆 � |𝒆| � 𝒇 )

+ℙ3
𝐶 (‖𝒆‖) + (𝐶𝟏 − ℎ𝒇 )𝑇

(

−
�̇�
𝛾𝑟

)

(37)

The decentralized update law of 𝒇 can be written similarly as (29) or (32) but in a decentralized fashion.

�̇� = 𝛾𝑟
(

|𝒆|2 + |𝒆|3
)

(38)

Then substituting Eq. (38) into Eq. (37) and writing in a concise way the first two terms leads to:

�̇�2 (𝒆, 𝒇 ) ≤ −ℎ
∑

(

𝒇 �
(

|𝒆|2 + |𝒆|3
))

+ ℙ3
𝐶 (‖𝒆‖) − (𝐶𝟏 − ℎ𝒇 )𝑇

(

|𝒆|2 + |𝒆|3
)

(39)

Then, since it is clear that 𝒇 𝑇 (

|𝒆|2 + |𝒆|3
)

=
∑

(

𝒇 �
(

|𝒆|2 + |𝒆|3
))

we reach the following result recalling Eq. (31):

�̇�2 (𝒆, 𝒇 ) ≤ 𝐶1 ‖𝒆‖ + 𝐶2 ‖𝒆‖
2 + 𝐶3 ‖𝒆‖

3 − 𝐶
∑

(

|𝒆|2 + |𝒆|3
)

(40)

where 𝟏𝑇
(

|𝒆|2 + |𝒆|3
)

is equal to the sum for all components/axis of
(

|𝒆|2 + |𝒆|3
)

. Now, let us upper bound ℙ3
𝐶 (‖𝒆‖) as follows

by using
∑

(|𝒆|) ≥ ‖𝒆‖, ‖𝒆‖2 =
∑

(

|𝒆|2
)

, and 3
√

3
∑

(

|𝒆|3
)

≥ ‖𝒆‖3 that are valid for any 𝒆:

ℙ3
𝐶 (‖𝒆‖) ≤ ℙ3

𝐶 ′ (|𝒆|) (41)

ℙ3
𝐶 ′ (|𝒆|) = 𝐶1

∑

(|𝒆|) + 𝐶2

∑
(

|𝒆|2
)

+ 3
√

3𝐶3

∑
(

|𝒆|3
)

(42)

ℙ3
𝐶 (‖𝒆‖) ≤ 𝐶

(

∑

(|𝒆|) +
∑

(

|𝒆|2
)

+
∑

(

|𝒆|3
)

)

(43)

from which follows:

�̇�2 (𝒆, 𝒇 ) ≤ 𝐶1 ‖𝒆‖ +
(

𝐶2 − 𝐶
)
∑

(

|𝒆|2
)

+
(

3
√

3𝐶3 − 𝐶
)

∑
(

|𝒆|3
)

(44)

Since the definition of 𝐶 in Eq. (26) can imply 𝐶 > 𝐶2 and 𝐶 > 3
√

3𝐶3 we can minimize the negative terms of Eq. (44) and

arrive at:
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�̇�2 (𝒆, 𝒇 ) ≤ ℙ3
2 (‖𝒆‖) (45)

ℙ3
2 (‖𝒆‖) = 𝐶1 ‖𝒆‖ +

(

𝐶2 − 𝐶
)

‖𝒆‖2 +

(

𝐶3 −
𝐶

3
√

3

)

‖𝒆‖3 (46)

Like for the centralized case we have a third order polynomial ℙ3
2 (‖𝒆‖) with second and third order coefficients negative. All

the considerations made before still apply for the decentralized case. Adding the bias in the adaptive term update like in Eq. (47)

allows to assure theoretically that 𝒇 is bounded, as a pure translating term is added to ℙ3
2 (‖𝒆‖) that lowers with 𝒇 as shown in

Eq. (48). Of course, with |𝒆|M is intended the maximum allowable error per axis.

�̇� = 𝛾𝑟
(

|𝒆|2 + |𝒆|3
)

− 𝛾𝑟
(

|𝒆|2M + |𝒆|3M
)

(47)

�̇�2 (𝒆, 𝒇 ) ≤ ℙ3
2 (‖𝒆‖) + (𝐶𝟏 − ℎ𝒇 )𝑇

(

|𝒆|2M + |𝒆|3M
)

(48)

Due to its nature this algorithm can be called Decentralized Indirect Robust Adaptive Control (DIRAC). The difference with

respect to the centralized controller is that each axis can work independently from the others. This feature may find limited

uses in attitude control but allows for a practical extension to the orbital robot case. As far as attitude control is concerned, the

difference lies in the fact that ℙ3
2 (‖𝒆‖) ≥ ℙ3

1 (‖𝒆‖) and that the final value of ℎ ‖𝒇‖ is approximately given by

ℎ ‖𝒇‖|end ≳
ℙ3
𝐶

(

‖

‖

|𝒆|M‖

‖

)

‖

‖

‖

|𝒆|2M + |𝒆|3M
‖

‖

‖

(49)

It is then obvious that such value can be greater than the value of CIRAC, thus it is generically expected to have higher

expenses using DIRAC instead of CIRAC.

4 NUMERICAL SIMULATIONS

In order to assess the performance, the robustness, and the ease of tuning of the proposed methods, a simulation campaign

has been carried out and it is here presented. The first part is dedicated to the attitude control problem with comparison of

different algorithms cited or presented in this work. Comparisons are made in terms of controller parameter sensitivity and in

terms of initial attitude error. With the same model, also convergence claims of CIRAC are analyzed. In the second part, an

implementation of the decentralized adaptive control applied to an orbital robotic case is studied.

4.1 Attitude control

The test case sees a satellite with the following inertia matrix:
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I =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

12.75 5.20 −4.76

5.20 33.00 −9.00

−4.76 −9.00 18.25

⎤

⎥

⎥

⎥

⎥

⎥

⎦

kg m2 (50)

and with general properties listed in Table 1. This includes also attitude guidance parameters, kept constant for the comparison,

and limits on the proportional gains of the controllers 𝑘𝑖. Such quantities are kept constant for every simulation. The values of

the controller parameters, including the initial 𝑘𝑖 values and other gains are listed in Table 2. Two different simulation campaigns

are conducted to check initial condition and gain sensitivity of IRAC, CIRAC and DIRAC.

TABLE 1 Test case data.

Symbol Value

𝑢m 0.5Nm
𝜆 1

2
𝕀3×3

𝛽 0.05
𝑘𝑖 [0.1, 50]
𝐪𝑟,0

[

0 0 0.26 0.97
]𝑇

𝝎𝑟
[

0 0.0010 0.0017
]𝑇

𝒅
[

0 0 0
]𝑇

‖�̇�‖M 0.0002, rad∕s2

‖𝒓‖M 0.02, rad∕s

TABLE 2 Controllers data.

Controller 𝑘𝑖 Other Gains

IRAC15 0.6375

⎧

⎪

⎨

⎪

⎩

𝜎1 = 0.01
𝜎2 = 100
𝜇 = 0.1

CIRAC 0.6375 𝛾𝑎 = 104

DIRAC 0.6375 𝛾𝑎 = 105

4.1.1 Sensitivity to gain variation

To assess the system sensitivity to the variation of the gains a set of 1000 test cases has been run. In each simulation, the initial

conditions (null attitude and rotational rate) and the target desired ones (Table 1) has been kept constant, while the "Other

Gains" in Table 2 have been varied in each run by multiplication for a factor 101.5𝜙 with 𝜙 generated randomly with a uniform

distribution in the range [−1, 1].
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The duration of the simulation is set to 1200 seconds, and at time 𝑡 = 600𝑠, a failure in a reaction wheel (it stops giving torque

to the system) is simulated with an instantaneous change in 𝑩 (which becomes also non-symmetric). A pyramid configuration

of 4 reaction wheels is assumed. The reference is given by 𝐪𝑟, updated with a constant angular velocity 𝝎𝑟.

FIGURE 2 IRAC gain sensitivity. Dashed lines highlight the envelope of simulations, the red full lines indicate the mean curves.

FIGURE 3 CIRAC gain sensitivity. Dashed lines highlight the envelope of simulations, the red full lines indicate the mean
curves.

Figures 2 and 3 present all the simulations performed with IRAC and CIRAC respectively. DIRAC results are not reported

with similar graphs as the difference with CIRAC simulations is minimal. For completeness, DIRAC results are included in

Figure 4.
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With 𝜎𝑖 and 𝜎𝑓 are identified the represented function standard deviation at the beginning and at the end of the simulation

respectively, while �̄�𝑓 is the final mean value of the relative curve set. The first curve represents the CLF (16) relative to the

angular velocity error 𝜔𝑒 and the second the attitude error CLF (3), both in logarithmic scale. The last one represents the effort

of the controller with the integral of the squared norm of the commanded control action.

For both the IRAC and CIRAC cases, the wheel failure reflects in a slight but noticeable increase in the errors starting at

𝑡 = 600 s. Both the CIRAC and DIRAC scheme (the latter not showed but exhibiting an analogous behavior) are then effective

in counteracting actuator failures. Moreover, the lower mean final values (denoted by 𝜎𝑓 in Figures 2 and 3) of errors and control

effort achieved by CIRAC with respect to IRAC denote a general better performance in the error/effort trade-off, while the

reduced dispersion (highlighted by the gray area) hints a reduced sensitivity to parameter variation.

FIGURE 4 Gain sensitivity analysis: control effort vs final attitude error.

Figure 4 shows the variation of final attitude error with respect to the control effort at the variation of the tuning parameters.

Thanks to the fact that only one single parameter needs to be tuned, for CIRAC and DIRAC the data points concentrate on a

single curve, identifying a monotonic decreasing relationship between effort and error. Higher values of the gain rate adaptation

parameter correspond to a faster system response and then to a lower error, as the relaxation factor is also multiplied by this gain.

This behavior constitutes one of the major findings of this work, and it is a very attractive feature, in the context of a reliable

industrial implementation: the system’s sensitivity to the gain rate adaptation change is very simple to be extrapolated, enabling

a fast tailoring of the algorithm to the specific problem.

On the contrary, IRAC presents a different behavior as data points are scattered on the whole domain, depending on 3 tunable

constants. In general, a higher number of parameters corresponds to a larger flexibility in the adaptation to the specific problem.

Nevertheless, the sensitivity to parameters change can be high and unpredictable, making difficult such tuning action. This is

evident in Figure 4, where in most of the cases IRAC exhibits worse performances than CIRAC, except for a very few points,
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meaning that a very good performance with IRAC is attainable for some very specific combination of gains that may be difficult

to find.

It can be seen that the CIRAC requires always a lower control effort than DIRAC regardless of the update gain. This is

due to the fact that, in this specific simple case, the system dynamics on the 3 degrees of freedom are similar: the centralized

approach is then capable to fully adapt to the system with an almost optimal control effort. On the contrary, in absence of relevant

asymmetries in the inertia distribution, the decentralized approach requires a larger effort to achieve comparable accuracy. Such

behavior is coherent with the theoretical development of DIRAC.

4.1.2 Sensitivity to initial conditions

The robustness and convergence rate of the controllers is tested through simulations with initial attitude set randomly, spanning

the whole attitude space with a uniform distribution. Time duration, wheel failure and the update of the reference attitude are kept

identical to the previous case. The gains of the controllers are kept constant as per Table 2. Additional simulations are performed

using a constant non adaptive controller, called for simplicity “MAX”, with proportional gain set to the highest admissible value

in the range of Table 1. MAX controller is introduced for comparison purposes, for it constitutes a boundary of the theoretical

achievable performances in the effort/error space for linear feedback control.

FIGURE 5 IRAC with different initial conditions. Dashed lines highlight the envelope of simulations, the red full lines indicate
the mean curves.

Figures 5 and 6 show the behavior of IRAC and DIRAC with different initial conditions. CIRAC results are not reported as

the difference with DIRAC is not highlighted by this representation. Again, actuator failure is visible in the errors’ trend for all

the controllers in a discontinuity at 𝑡 = 600 s, efficaciously handled in all the cases.
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FIGURE 6 DIRAC with different initial conditions. Dashed lines highlight the envelope of simulations, the red full lines indicate
the mean curves.

FIGURE 7 Effort vs final error with initial conditions variation.

Figure 5 presents the variability of the IRAC. The final achieved error is practically independent on the initial condition, with

the system that converges to the same error norm in each simulation. Due to the nature of the boundaries, the selection of the

gains is not always straightforward and might be re-assessed for different satellites. In any case, it is reasonable to conclude that

once the gains of the controllers are set, the expected errors are quite predictable for any initial conditions.

The variability in the final error of the decentralized adaptive controller is shown in Figure 6. The decentralized approach

induces a certain degree of variability, as the three different axis are exited in a different way depending on the initial condition.

Like in the previous case, Figure 7 represents each simulation as a point in the error-effort plane. As expected the IRAC

follows a straight line, highlighting the convergence to a specific error and with effort depending on the initial attitude. The
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MAX controller has a similar behavior: in terms of robustness this controller with no adaptation is able to deliver the lowest

error possible at the price of the highest control effort.

On the other hand, the CIRAC variability is limited and predictable, and can be due to slower settling time with respect to

IRAC. In this simulation the adaptive parameter has not been updated with a bias to settle for a specific error as otherwise

described by Eq. (47). The decentralized version, DIRAC, has higher variability since, depending on the specific attitude, the

path to convergence and excitation of the three axes is different. It worth to be noted that a very easy and quick tuning achieved

a significantly lower error w.r.t. IRAC in all cases for both CIRAC and DIRAC. It is possible that the same performance could

be still achievable by IRAC, but at the price of a more complex tuning activity with no guarantees of success.

4.1.3 Steady state error analysis

We have seen that the CIRAC should be able, with the addition of a bias term in the update according to Eq. (32), to reach a user

defined error ‖𝒆‖M. To verify this claim, simulations with varying initial conditions are performed according to the previous

scenario. The only modifications are the final time, which has been increased, and the absence of reaction wheel failure. This is

done to highlight better the controlled system behavior with less variability induced by the fault.

FIGURE 8 CIRAC steady state error test.

Results are presented in Figure 8 where it is easy to appreciate the convergence to the user defined velocity error ‖𝒆‖M = 10−3.5

after the initial transition period where the error is reduced to a minimum. ‖𝒆‖M represents the upper bound of the acceptable

error: it can be seen that, after a stiffening phase, the system relaxes to acceptable levels. If disturbs, actuator faults or similar

phenomena alter the equilibrium reached, as the error rises the system reacts again by increasing the value of 𝑓 , corresponding

to an increase in stiffness.
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These results put in evidence the capability of CIRAC to relax the stiffening of the system to an acceptable value regardless

of the initial condition and the input reference velocity.

4.2 Orbital robotics test case

In order to show the ability of the DIRAC to increase performance and reducing the control effort while being robust to model

uncertainties at the same time, a multibody simulation test campaign, representative of a practical class of problems, has been

carried out. The reference scenario is a spacecraft designed for On Orbit Servicing applications, equipped with a robotic arm. The

arm’s end effector is required to be placed in a specific target pose relatively to the serviced satellite in a circular equatorial orbit.

The context, the reference scenario, and the mathematical model for the multibody orbital robot can be found in Reference [43].

A 2D model is assumed: the spacecraft main body is equipped with a 3 links robotic manipulator and one reaction wheel

for the attitude control. The total number of degrees of freedom is then 7 (3 for the spacecraft body, 3 for the robotic arm, and

1 for the reaction wheel). The system translation is controlled by a set of chemical thrusters with constant thrust and Sigma

Delta Modulation44. The multibody implementation ensures the cross coupling effects of the different degrees of freedom.

Disturbances are introduced by gravity effects and thrusters misalignment with respect to the center of mass, whose location

changes as the arm moves. Measurement noises are not introduced. Relevant physical and control data are shown in Table 3.

TABLE 3 Planar robot data.

base wheel link 1 link 2 link 3

Mass
[

kg
]

1500.00 5.00 21.21 16.96 4.24
Inertia

[

kg ⋅m2] 100.00 10.00 1.78 0.92 0.02
Characteristic lengths [m] 2.00 - 1.00 0.80 0.20

𝑘𝑖 100.00 - 25.00 2.00 3.85
Joint lower limits

[

deg
]

- - -180 -90 -90
Joint upper limits

[

deg
]

- - 0 90 90

This example is particularly suited to highlight the capabilities of DIRAC. The presence of a robotic arm implies a highly

state-dependent matrix of inertia, changing as the system assumes different configurations.

Such a system is unsuitable for IRAC, which is heavily tailored to the attitude control problem and cannot be adapted to

additional, robotic degrees of freedom without a deep work of reformulation. On the other hand, the formulation of CIRAC is

sufficiently general to be adapted to such a system, but with an additional drawback. In fact, in case different parts of the system

were characterized by very different dynamics, like in this example, the heavily centralized structure of CIRAC implies that the

rate of adaptation is driven globally by the single tunable parameter. In such condition the system stiffness, determined by the

global gain, will tend inevitably to increase following the "slowest" part, potentially leading to detrimental behavior and even
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instability, especially in case of real systems where the controller developed in a continuous framework is at a certain point

implemented in a discrete fashion.

More complex centralized approaches could be possible, but at the price of modeling the system with high detail. Such

detailed knowledge, especially for highly state-dependent matrix of inertia due to the presence of robotic appendages, is difficult

to be obtained analytically, making the formulation of the dynamics in the form described by Eq. (14) really hard to achieve.

Additional disadvantages of more complex schemes potentially include increase difficulty in tuning, due to the presence of a

larger number of hyperparameters, and a more complex implementation, with corresponding higher computational demands (a

critical aspect for all the space systems).

A decentralized approach avoids the necessity to compute the dynamics as a whole. The effect of the moving arm, from the

decentralized attitude controller point of view, is equivalent to a time-varying disturbance on the inertia, modeled as 𝑨𝒙 of

Eq. (12), while the robotic harm itself is handled by its own, autonomous controller. By separating faster and slower dynamics

in this way, DIRAC allows to retain the simplicity of CIRAC, matching at the same time the behavior of both the system parts

while achieving a lower control effort. This capability of DIRAC to effectively handle complex systems, for which a centralized

formulation would be arduous, without sacrificing tuning simplicity constitutes the second major finding of this work.

The performance of a DIRAC controller with respect to a basic, proportional, decentralized, non-adaptive controller is com-

pared. The control under exam is applied to attitude and robotic joints degrees of freedom, while translation control is performed

with the same standard, non-adaptive approach in both cases. Controllers are set to operate in velocity, meaning that the error is

given by the difference of the state (platform angular velocity and joints angular velocity) with respect to the reference. Joints

reference velocities are computed with a classical Jacobian transpose method preferred over generalized Jacobian/free floating

approaches like the one expounded in Reference [36] for robustness issues. Thus, reference velocities are computed from the end

effector velocity which is set to be the velocity that drives the end effector towards the target point. The construction is pretty

similar to the guidance problem of the satellite, although here formulated in the 2D plane. As the target is relatively fixed, there

is no need for a feedforward velocity term in the controllers. In both controllers setting, the reference inertia of link 2 has been

deliberately underestimated to highlight the capability of the proposed controller to compensate errors due to uncertainties. The

control cycle is set to 100Hz sampling rate. The rendezvous approach is on v-bar, meaning the direction where the relative drift

due to orbital motion is lower45.

The comparison between the proposed adaptive scheme and the basic proportional controller compares the attitude error

using 𝑉𝜀
(

𝐪𝑒
)

as metric and a cost function of the robotic arm tip position and attitude error. Additionally, the orbital robot base

angular velocity error and the arm joints velocity errors are compared. Finally, the energy cost of both controllers is compared

by looking at the reaction wheel speed and the integral of the control torques used to move the robotic arm towards its goal.
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FIGURE 9 Attitude and robotics pose errors.

FIGURE 10 Attitude and robotics rotational rate errors.

Figures 9 and 10 show the differences about the attitude error, the cost function of the robotic arm (that comprehends relative

position and attitude of the end effector), and the rotational rate errors relative to the satellite body and the robotic arm joints.

The adaptive controller is able to achieve the objective faster than the basic controller by overcoming the underestimation of

a parameter. Given enough time the basic proportional controller is able to achieve same results. Should be noted that using a

much slower reference trajectory the difference between the two controllers would be reduced.

The DIRAC is able to overcome uncertainties and reduce the errors significantly faster than the baseline, with less oscillations

in the transient phase. Plus, another major improvement of DIRAC with respect to the standard controller is the reduced control

effort, shown in Figure 11 in terms of reaction wheel speed and cumulative joints control effort. This effect is due not only to

the faster maneuver, but also to the decrease of the proportional gain actuated by the DIRAC in the final phases.
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FIGURE 11 Control effort.

5 CONCLUSIONS

In this paper two new attitude controllers, tailored for spacecraft attitude control and belonging to the indirect robust adaptive

controller class, are developed in centralized and decentralized form. Improved ease of tuning, thanks to the dependence on one

single tunable constant, and a reduced variability with respect to problem-specific parameters constitute the main advantages of

the new formulation, with consequently shorter development time and higher confidence in system verification, when applied in

practice onboard actual space systems. Both versions are able to relax the system stiffness up to an user defined error threshold,

making the controller robust to hyper-stiffening, and easing the tailoring to specific mission requirements, in a simple trade-

off between control error and effort. Uniform Ultimate Boundedness convergence is theoretically demonstrated for both the

controllers, while a simulation campaign, representative of a real case of application, confirmed good properties of convergence,

performance, and sensitivity with respect to the proportional gain, with a reduced control effort. The scheme proved to be

robust to actuators fault and incorrect estimation of system parameters, while the simple control structure, with consequently

low computational burden, enables its application to a wide range of systems. A simulation of an orbital robot case proved

the effectiveness of the decentralized version of the controller in handling also more complex systems with several degrees of

freedom and highly state-dependent moments of inertia. All these properties make the proposed algorithms very appealing for

the new arising wave of space applications.
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