
Semi-Analytical Adaptive Guidance Computation for
Autonomous Planetary Landing

Paolo Lunghia,∗, Pierluigi Di Liziaa, Roberto Armellinb, Michèle Lavagnaa

aPolitecnico di Milano, Aerospace Science & Technology Dept., via La Masa 34, 20156
Milano, Italy

bThe University of Auckland, Engineering Block 1 - Bldg 401, 20 Symonds St., Auckland
Central, Auckland 1010, New Zealand

Abstract

A novel algorithm for autonomous landing guidance computation is presented.

The trajectory is expressed in polynomial form of minimum order to satisfy a

set of 17 boundary constraints, depending on 2 parameters: time-of-flight and

initial thrust magnitude. The consequent control acceleration is expressed in

terms of differential algebraic (DA) variables, expanded around the point of the

domain along the nominal trajectory followed at the retargeting epoch. The DA

representation of the objective and constraints gives additional information about

their sensitivity to variations of the optimization variables, which is exploited

to find the desired fuel minimum solution (if existing) robustly and with a very

light computational effort.
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Trajectory Optimization, Hazard Detection and Avoidance, Differential Algebra

1. Introduction

Onboard autonomy is a key feature for the next space systems generation.

The capability to actively explore in-loco the operational environment, to select

the most scientifically relevant locations to explore, and to adapt the system’s
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behavior to detected conditions, increases both the robustness and the flexibility5

of the vehicle operations, avoiding limitations due to interplanetary distances.

Precision landing with Hazard Detection and Avoidance (HDA) capabilities

represents a typical case in which high autonomy is required. Among the big

challenges to deal with in such a scenario are the short duration of the terminal

approach phase, the telecommunications delays, and the necessity to analyze10

in-loco landing sites and possible trajectories: they all clearly ask for a high

level of on-board autonomy in the guidance navigation and control. A crucial

issue in this context is the formulation of algorithms capable to be executed

in real-time on board the spacecraft, given the limited computing capabilities

of flight processors, coupled with strict requirements on update frequencies15

requested by the whole GNC system.

Complex missions in which landing plays a major role are being developed by

all the major agencies: ESA is working together with ROSCOSMOS to establish

a cooperative program of lunar exploration, of which the future Luna-Resource

Lander (Luna-27) mission is a major element. Part of the European contribution20

for the Luna-27 mission is the PILOT (Precise and Intelligent Landing using

Onboard Technologies) subsystem for enhancing landing capabilities through

high landing precision and hazard avoidance. An analogous collaboration has

been established in the ExoMars program for Mars exploration. The partially

failed landing attempt of the lander Schiapparelli in 2016 [1, 2] clearly confirmed25

the criticality of Entry, Descent, and Landing (EDL) maneuvers for such space

missions. A second lander, carrying a rover for surface exploration, is scheduled

for launch [3]. It is still evident how the lacking of a full and robust HDA

system and the need of maximizing safety affect the mission by imposing strict

requirements on the selection of the landing site in terms of landing ellipse30

minimum dimension, and maximum rock size and abundance [4]. Several other

missions involving complex landing and ascent maneuvers are under evaluation by

ESA in cooperation with different agencies and in preparation for future arrival

of astronauts, including a Lunar Polar Sample Return mission, a Mars Sample

Return mission, and the HERACLES mission [5]. Since 2006, technologies35
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for autonomous landing are studied by NASA in the frame of the Autonomous

Landing Hazard Avoidance Technology (ALHAT) program. ALHAT technologies,

tested at the end of 2014 in free flight on the Morpheus lander demonstrator,

are going to be integrated in future Moon and Mars missions, with a new

Martian rover in the Mars 2020 mission [6]. In May 2019, NASA announced the40

ARTEMIS program, with the aim of sending a human crew back to the Moon by

2024, and to develop new technologies mandatory for a human Mars mission in

the 2030s [7]. At the beginning of 2019, CNSA, with the Chang’e-4 mission, has

performed its second lunar landing (and the first ever soft landing on the Moon’s

far side) with a lander/rover system, in the Von Kármán crater floor within45

the South Pole-Aitken basin [8], while ISRO is carrying out a lunar exploration

program, including landing and surface exploration by means of rovers, with a

series of missions named Chandrayaan1.

Spacecraft autonomy in interplanetary missions is a wide and very active

research topic: for additional information, and to have a wider overview of the50

operative scenario, especially for the Moon case, the interested reader can refer

to [9, 10, 11, 12].

This paper focuses on the problem of fast and efficient on-board trajectory

generation, which is required to achieve the necessary levels of precision and

safety during landing. Fuel consumption minimization is assumed as main crite-55

rion in the design of a divert trajectory. Aside obvious overall mass containment

considerations that affect every space mission, a fuel-optimal approach in hazard

avoidance phases maximizes the attainable landing area and increases the possi-

bility of subsequent trajectory corrections during the maneuver, maximizing the

robustness and the safety of the landing phase.60

The earliest approach to the problem, pushed by the limitation in computa-

tional power in the years of the Apollo missions, consisted in the development of

a closed-form explicit solution in which the trajectory is expressed in a quartic

1ISRO Chandrayaan 2 mission updates, https://www.isro.gov.in/chandrayaan2-latest-

updates, Last visit: 31st Dec. 2021
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polynomial in time [13]. This kind of solution was later generalized and still

considered in more recent years for the landing of the Mars Science Laboratory65

[14], and a popular variant of this explicit guidance, called E-Guidance, was

proposed also to achieve HDA capabilities [15]. Despite this easiness of imple-

mentation, this category of algorithms is not able to handle any other constraints

but boundary conditions, and it does not consider any kind of optimality in the

solution [16]. A non-linear formulation was proposed in [17], capable to achieve70

large retargeting maneuvers, still without considering optimality. Optimal for-

mulations were obtained by means of calculus of variations [18, 19], achieving

fuel-optimal or time-optimal trajectories, but under significant assumptions, like

planar o nearly planar maneuver, which can limit retargeting capabilities. It

has been largely demonstrated that a fuel optimal guidance profile consists in a75

maximum-minimum-maximum thrust profile [20]: the discontinuous nature of

this solution presents a well known challenge for optimization algorithms. Direct

optimization proved effective to cope with such difficulties [21, 22]. Convex opti-

mization was proposed as a method to ensure the desired convergence properties.

This approach, compared to explicit polynomial schemes, proved effective with a80

dramatically larger region of initial feasible states, at the price of a relatively large

number of optimization variables [23, 24, 25]. The approach was experimentally

validated on a ground rocket system [26] and the code for its implementation has

recently been optimized for execution on flight hardware [27]. Convexification

can be coupled with pseudospectral discretization and a multi-phase approach to85

extend its flexibility [28]. Also the application of artificial intelligence techniques

based on Artificial Neural Networks has recently been proposed: a deep recurrent

architecture was found to be capable of imitating a fuel-efficient guidance system

for pinpoint landing [29] with good performance in a simulated environment.

The effectiveness of the system in a perturbed environment is still to be verified.90

Reinforcement learning proved also effective in the powered descent guidance

problem, both as a standalone method and coupled with traditional guidance

methods [30, 31].

A semi-analytical formulation has been developed by our research group
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at Politecnico di Milano [32]. In this method, the trajectory is expressed in95

polynomial form of minimum order to satisfy the set of 12 state boundary

constraints – associated with the initial and final position and velocity vectors –

and 5 control constraints – due to the thrust vector at the epoch of trajectory

generation request and to the desired vertical attitude at touchdown. The

acceleration polynomial profile is, therefore, quadratic onto the vertical axis,100

and cubic onto the two horizontal directions. By imposing boundary conditions,

separately for each axis, a fully determined trajectory profile is obtained as a

function of only two optimization parameters: the time-of-flight tf and the thrust

magnitude T0 at the retargeting epoch. Maintaining a restricted set of free

parameters enables the adoption of very simple optimization algorithms, such105

as compass search, ensuring at the same time the fulfillment of the additional

constraints and short computation time. Nevertheless, this approach is not free

of weaknesses. In particular, the combination of low gradient values together

with simple direct optimization methods generally lead to a suboptimal solution.

In some cases, this can yield undesired sudden changes in the solution found,110

with even small variations of the ordered retargeting.

This paper extends and improves the above semi-analytical approach by intro-

ducing the use of Differential Algebra (DA) techniques. In DA, the application of

usual algebraic operators is broaden from real numbers to functions, modeled as

their arbitrary-order Taylor expansions around a selected point [33, 34, 35]. The115

three components of the acceleration are expressed as DA variables, expanded

around the nominal trajectory followed by the lander at the retargeting epoch:

in this way the DA formulation leads to an exact, and not only approximate,

representation of the acceleration profile, due to its polynomial nature. From

the acceleration history, the mass profile is easily obtained through integration,120

leading to a DA representation of the objective and the constraints as functions

of the two optimization variables. Such a representation brings about useful

information on the represented quantities. It provides their values at the ex-

pansion point, as well as their sensitivity to the optimization variables. This

additional information is exploited in the optimization process to enhance the125
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original method in terms of computational efficiency and quality of the identified

solution.

2. Review of Planetary Landing Problem Formulation

The formulation of the optimization problem recalls the one adopted in

the previous study [32]. The approach is summarized in the followings. Some130

modifications are applied, especially in the constraints formulation, to reduce

approximations, to get a smoother constrained objective function (which eases

the optimization), and to obtain a more rigorous scaling of the problem.

A planetary landing is characterized by fast dynamics. HDA maneuvers are

expected to happen in the last few kilometers of altitude, the expected time of135

flight is in the order of 1 min, and the mass is supposed to significantly change

during the maneuver. A constant gravity field with a flat ground are assumed,

for the traveled distance is small compared to the planet’s radius. Low relative

velocity (<100 m s−1) allows to neglect aerodynamic forces, if an atmosphere is

present, especially in case of low density such as the case of Mars [23].140

The dynamics of the spacecraft translation are expressed in a ground reference

system (see Fig. 1) as:



ṙ = v

v̇ =
T

m
+ g

ṁ = − T

Ispg0

(1)

where the state vector [r v m] includes the position vector r, the velocity v and

the spacecraft mass m. T is the control thrust vector (T = ‖T‖), while g is the

constant acceleration of gravity vector of the planet, Isp the specific impulse of145

the main engine, and g0 the standard gravity acceleration on Earth. Please note

that in rest of the dissertation, the ground reference system is assumed to be

centered at the target landing site, with x as the altitude, y as the Downrange

direction and z as the Crossrange direction (as shown in Fig. 1). In any case
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Figure 1: Ground [x y z] and flight [xf yf zf] reference systems.

these assumptions are made just to ease the implementation of the proposed150

algorithms, and do not compromise the generality of the problem formulation.

The mass dynamics are linked to the rest of the system by the thrust

magnitude T . The thrust-to-mass ratio P is defined:

P = T/m = v̇ − g (2)

The mass mass dynamics can be then rewritten as

ṁ = − P

Ispg0
m (3)

where P = ‖P‖, which is a first order linear ordinary differential equation whose155

solution can be computed once the thrust-to-mass ratio profile in time is known.

No assumption is made about the spacecraft navigation system, except that

the initial states [r0 v0 m0] at the initial time t0 are supposed to be known. For

the sake of simplicity, t0 is set to 0 in the reminder of the paper. The maneuver

is assumed to end at the time instant tf: at this point, the final state vector is160

constrained to assume the target desired values for what concerns position and

velocity, while the final mass remains free: [rf vf m(tf)].

2.1. Trajectory Formulation

It is assumed that the main thruster is tightly connected to the spacecraft

structure. The thrust vector, when expressed in the body-fixed reference system165

(BRS) depicted in Fig. 2, has only one non-zero component along the xb direction:

7



yb
(Pitch

xb
Roll)

(Yaw)

Figure 2: Body-fixed reference system.

T(BRS) = [−T 0 0]T . The direction of the thrust vector is then controlled by

the attitude of the lander, while its change in magnitude is obtained by the

throttling of the main thruster.

Attitude is defined as the rotation of the BRS with respect an auxiliary170

reference called flight reference system (FRS), denoted by the unit vectors

[xf yf zf]
T in Fig. 1, centered in the center of mass of the spacecraft, the xf axis

pointing toward downrange, the zf axis pointing downwards. The rotation is

expressed in Euler angles, where θ (pitch angle) is the first rotation around yb,

ψ (yaw angle) is the second rotation about zb, and φ (roll angle) is the third175

rotation around xb. This sequence of Euler angles (231) is adopted to avoids

singularities in the computation. The system of Eqs. (1) can be re-written,

including the attitude parameterization, as:

ẋ = vx ẏ = vy ż = vz

v̇x = −T cosψ sin θ

m
+ gx v̇y = −T cosψ cos θ

m
v̇z = T

sinψ

m

ṁ = − T

Ispg0

(4)

It can be noticed that the roll angle φ does not affect the system: it is

a reasonable result, because a rotation of the spacecraft around the nozzle180

direction does not modify the thrust pointing direction. Then, the roll angle can

be dropped from the guidance profile: its value is actually free and available to
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fulfill other design requirements about the landing maneuver (i.e. to optimize

the pointing of navigation sensors). In the guidance computation algorithm, its

value is assumed to be null constant. Discontinuities are allowed in the thrust185

magnitude (is assumed that the thrust control has a high bandwidth w.r.t. the

lander dynamics), but not in the spacecraft attitude: this imposes an additional

boundary constraint on the initial acceleration

v̇(0) = − T0

m0


cosψ0 sin θ0

cosψ0 cos θ0

− sinψ0

+ g = f(T0) (5)

whose only unknown is then the initial thrust magnitude T0.

At the end of the maneuver, the attitude is required to be aligned with the190

local vertical at the landing site. In case of horizontal terrain, this adds two

more boundary constraints:

v̇y(tf) = v̇z(tf) = 0 (6)

leading to a total of 17 boundary constraints for position, velocity and acceleration

components:

r(0) = r0 r(tf) = rf

v(0) = v0 v(tf) = vf (7)

v̇(0) = f(T0) v̇(tf) = [free, 0, 0]T

The 3 components of the acceleration are then expressed in a polynomial195

form of the minimum order needed to satisfy the boundary conditions:

v̇(t) =


v̇x

v̇y

v̇z

 =


v̇0x + c1xt+ c2xt

2

v̇0y + c1yt+ c2yt
2 + c3yt

3

v̇0z + c1zt+ c2zt
2 + c3zt

3

 (8)

By integrating the acceleration twice and applying the aforementioned bound-

ary constraints, the trajectory is fully defined, unless for the time-of-flight tf and
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the initial thrust magnitude T0, that constitute the optimization variables. The

thrust-to-mass ratio can be obtained from the acceleration through the Eq. (2).200

The corresponding thrust profile is simply:

T = mP (9)

in which the mass profile is computed by numerical integration of Eq. (3).

From the thrust vector a complete guidance profile, in the form of Euler angles

and thrust magnitude, can be obtained by simple conversions.

2.2. Trajectory Constraints205

A feasible landing trajectory is subject to several constraints on both the

optimization variables and the states assumed by the system along the whole

maneuver (the so-called path constraints). Efficient formulation is required to

achieve a precise and fast optimization. Here the constraints relative to the

pinpoint landing problem are completely rephrased for an effective and robust210

evaluation during the guidance computation, having in mind their implementation

in an optimization scheme based on Taylor map inversion (as described later in

Sec. 3).

The initial thrust magnitude is bounded to the thrust actually available

on-board:215

0 < Tmin ≤ T0 ≤ Tmax (10)

while the time-of-flight must lie between its lower and upper limit:

0 < tmin ≤ tf ≤ tmax, tmax = mfuel
Ispg0

Tmin
, tmin =

(
2r0x

Tmax/mdry − ‖g‖

)0.5

(11)

The theoretical tmax is determined by the amount of fuel on board mfuel,

whereas tmin corresponds to the time required by the lander to reach the ground

with maximum thrust pointing downward. Evidently tmin does not corresponds

to a feasible soft landing maneuver, and it is adopted as a theoretical lower limit220
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to exclude singularities arising towards tf = 0. In the actual implementation,

time-of-flight appears always at the denominator. Since floating point division is

always slower than multiplication (and even more for DA variables, see Section 3),

for code efficiency purposes the inverse time-of-flight τf = 1/tf is adopted instead

of tf as optimization variable, without accuracy losses, with corresponding225

τmin = 1/tmax and τmax = 1/tmin.

From here onward, the notation x = [τf, T0]T is adopted for the optimization

variables vector. Box constraints, path constraints and any additional constraint

not implicitly satisfied by the polynomial formulation are written in the form of

g(x) ≤ 0; in order to achieve better convergence properties, they are also scaled230

to assume a value between −1 and 0 inside the feasible domain. This leads to

the normalized inequalities:

T0 − Tmax

Tmax − Tmin
≤ 0 (12)

Tmin − T0

Tmax − Tmin
≤ 0 (13)

τf − τmax

τmax − τmin
≤ 0 (14)

τmin − τf
τmax − τmin

≤ 0 (15)

Boundaries on thrust are applied also as path constraint:

T (t)− Tmax

Tmax − Tmin
≤ 0 (16)

Tmin − T (t)

Tmax − Tmin
≤ 0 (17)

The angular acceleration of the spacecraft is limited by the actual control

torques MCmax given by the attitude control system. Coupled terms in attitude235

dynamics make the extrapolation of the control torques from the thrust vector

not straightforward. The objective is to characterize such a rotational rate

constraint without coupling the problem to the rotational dynamics, to save

computation time. Torques are approximated by the decoupled term due to
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the angular acceleration, which is an accurate approximation as the rotational240

rate remains limited. Exploiting this approximation leads to the following

(normalized) inequality:

( Imax

MCmax

)2

‖ω̇(t)‖2 − 1 ≤ 0 (18)

in which ω̇ is the derivative of the rotational velocity vector, and Imax is the

maximum moment of inertia at initial time t0, adopted to avoid the on-board

calculation of inertia properties, and to include a certain safety margin in the245

torques evaluation. The assumption of constant roll angle made in Sec. 2.1

implies that the rotational velocity lies in the plane perpendicular to the control

acceleration vector (which is aligned to the thrust vector and then to the roll

axis). It is then possible to obtain ω from the relation:

ȧ = ȧâ + ω × a =
ȧ · a
‖a‖

a

‖a‖
+ ω × a (19)

where a = v̇ − g is the control acceleration vector (whose derivative ȧ is known250

exactly, being a polynomial in time), ȧ is the derivative of the control acceleration

modulus and â is the control acceleration unit vector. The rotational rate vector

can then be computed as:

ω =

[(
ȧ · a
‖a‖2

)
a− ȧ

]
× a

‖a‖2
=

a× ȧ

‖a‖2
(20)

The complete procedure to obtain (20) from (19) is detailed in Appendix A.

In a feasible landing path, the obvious constraint that the lander must not255

impact the ground can be improved considering a Glide-Slope Constraint, which

imposes that the lander has to remain in a cone defined by the maximum slope

angle δmax, as showed in Fig. 3. This constraint adds a further margin of safety,

even in presence of bulky terrain features near the landing site, limiting at the

same time the angle of view on the target. In fact, the performance of vision-260

based navigation systems depend also on the inclination between the trajectory

and the ground [36, 37]. The normalized form of this constraint is:
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Figure 3: Glide-slope constraint.

r2
y(t) + r2

z (t)

r2
x(t) tan2(δmax)

− 1 ≤ 0 (21)

Finally, the polynomial formulation does not explicitly consider any constraint

on final mass, that must be included between the initial value and the spacecraft

dry mass. Since the mass trend is strictly monotone (by problem construction)265

the evaluation of the maximum mass constraint is redundant: the only constraint

with respect the minimum mass is verified. Anyway, the initial mass value is

exploited to obtain the normalized relation:

mdry −m(tf)

m0 −mdry
≤ 0 (22)

2.3. Differentiation and integration

In the computation of the objective function and the related constraints,270

some numerical integration and differentiation are involved. In particular the

evaluation of the mass dynamics of Eq. (3) needs an integration, while the

derivative of the rotation rate vector ω is required for the evaluation of the

control torque constraint. Plus, all the path constraints need to be satisfied

at every time instant during the landing. Pseudospectral techniques allow us275

to evaluate them discretely at Chebyshev-Gauss-Lobatto (CGL) points. CGL

points are selected for they include an explicit node at the end of the domain,

simplifying the evaluation of the system mass at the end of the maneuver. Plus,

they make possible the adoption of precise and efficient quadrature formulas, as

well as differentiation by means of the Chebyshev differentiation matrix [38].280
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2.4. Optimization Problem

The optimization problem for planetary landing takes the form:

Find T0 and τf, in the domain defined by the inequalities (12), (13), (14),

and (15), that minimize the fuel consumption computed by the Eq. (3), subject

to constraints (16), (17), (18), (21) and (22).285

Denoting as g(x) the vector of the constraints defined by Eqns. (12–18), (21),

and (22), the problem can be written in the compact form:

arg min
x

f(x) subject to g(x) ≤ 0 (23)

where f(x) = −m(tf). The optimization could be solved with any nonlinear

programming (NLP) solver: the choice of this solver has a huge impact over the

final convergence properties and computational time. In this paper, a dedicated290

optimization algorithm based on DA is developed. In the following section, some

notes about differential algebra are reported. Then, the algorithm proposed for

landing trajectory optimization is detailed, and the results of some practical

simulations are presented and discussed.

3. Optimization Based on Taylor Map Inversion295

Differential Algebra techniques were devised to attempt solving analytical

problems through an algebraic approach [33]. DA techniques rely on the ob-

servation that it is possible to extract more information on a function rather

than its mere values: quantities (functions or simple numbers) are represented

by their Taylor expansion map around a specified point in the variables space.300

The straightforward implementation of differential algebra in a computer allows

computation of the Taylor coefficients of a function up to a specified order k,

along with the function evaluation, with a fixed amount of effort. Standard

mathematical operators can be defined for DA variables as well as for real num-

bers. Similarly to the algorithms for floating point arithmetic, the algorithms305

for functions followed, including methods to perform composition of functions,
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to invert them, to solve nonlinear systems explicitly, and to treat common ele-

mentary functions [33, 34]. In addition to these algebraic operations, the DA

framework is endowed with differentiation and integration operators, therefore

finalizing the definition of the DA structure. For additional details about DA310

and its usage in navigation and guidance see for example [39, 40, 41, 42].

In the reminder of the paper we will express the DA expansion of a quantity

(number or function) f(x) as [f(x)] = Pf(x)(δx), in which the square brackets

remind that the output is a DA variable, P indicates a Taylor map or polynomial,

the subscript the quantity represented by the Taylor expansion, and the δ reminds315

that the Taylor expansion is function of the variation with respect to the reference

values. The DA computation adopted in this work was practically implemented

in the software DACE2 (Differential Algebra Computational Engine) [43].

This work leverages on the properties of the DA variables to perform a

fast and precise optimization. The search for the optimum is divided in two320

subsequent phases. First, the algorithm searches for a feasible point (feasibility

phase); once feasibility is achieved, the solution is refined to gain the optimum

(optimality phase). The feasibility function Φ(x) is defined as:

Φ(x) =
∑
i

wi
(
gi(x)

)2 (24)

where the weight wi corresponds to the Heaviside step function of the i-th

constraint:325

wi = H
(
gi(x)

)
(25)

introduced to consider only active constraints. Given Φ(x), the feasibility phase

goes through the following steps:

1. The constraints are evaluated at the current point xj , to identify active

constraints and weights wij . The first guess x0 is here assumed fixed in a

predefined point inside the optimization domain. In a real scenario, the330

2https://github.com/dacelib/dace, Last visit: 31st Dec. 2021
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actual spacecraft state at the retargeting epoch can be used as first guess

to further reduce the iterations required for the feasibility phase. If the

point is feasible, the algorithm passes to the optimality phase.

2. The feasibility function is expanded as a DA variable about the current

point xj :335

Φj = Φ(xj) −→ [Φj ] =
∑
i

P
wi

(
gi(xj)

)2(δxj) = PΦj
(δxj) (26)

where P
wi

(
gi(xj)

)2(δxj) denotes the Taylor expansion of the i-th constraint

about the reference point xj with respect to the optimization variables.

To save additional computation time, when a constraint is evaluated in

multiple points (e.g. the path constraints at CGL points) only the most

violated is included in the computation of [Φj ].340

3. The Taylor expansion of the gradient of Φj with respect to the optimization

variables τf and T0 is easily obtained by differentiating the polynomial

[Φj ] with respect to them. The two resulting polynomials, which form

a 2-dimensional array of DA variables, map any variation of x into the

corresponding value of the partial derivatives:345

[∇Φj ] = P∇Φj
(δxj) (27)

4. The polynomial map of the gradient is inverted. To this aim, the constant

part of [∇Φj ] (corresponding to the value of the gradient at the expansion

point xj) is subtracted: the resulting map describes the variation of the

gradient as a function of the variation of xj :

[δ∇Φj ] = P∇Φj
(δxj)− P∇Φj

(δxj)
∣∣
δxj=0

= Pδ∇Φj
(δxj) (28)

The map in Eq. (28) is then inverted. The inverse map provides the350

variation of xj necessary to achieve any desired variation of the gradient

[34]:
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[δxj ] = P−1
δ∇Φj

(δ∇Φj) (29)

The inversed map is evaluated at −P∇Φj (δxj)
∣∣
δxj=0

to obtain the correc-

tion step to move from xj to the point of the domain that cancels the

gradient. The result of the evaluation is a vector of two reals:355

∆xstep = P−1
δ∇Φj

(
−P∇Φj (δxj)

∣∣
δxj=0

)
(30)

5. The expansion point is updated with the relation:

xj+1 = xj + α∆xstep (31)

where the correction parameter α depends on the length of the computed

step:

α =
a

‖∆x‖
+ b (32)

where a, b ∈ R+. This relation grants the possibility of reducing the step

size for unacceptably large δxstep, while imposing at the same time a360

minimum step size. This correction is necessary to achieve a feasible point:

in fact, the minimum of the feasibility function Φ lies on the boundary

of the feasible domain. Iterating from the infeasible side of the equation

without including α would force the optimization process to get arbitrarily

close to the feasibility region without reaching it. Once the expansion365

point is updated, the algorithm starts a new iteration from step 1. If a

predefined maximum number of iterations is reached without achieving

feasibility, or the requested step length is zero, the process is interrupted

and the requested retargeting is classified as infeasible.

In the optimality phase, the solution computed in the feasibility step is370

refined towards the optimum. The optimality function corresponds to the

original objective function modified as:

17



f(x) = −m(τf) +
1

t

∑
i

log
(
−gi(x)

)
(33)

where the second term of the summation is a logarithmic barrier that forces

the solution to remain in the feasible domain. The optimality phase works as

follows:375

1. The optimality function is expanded as a DA variable:

fj = f(xj) −→ [fj ] = Pf (δxj) (34)

The solution of Eq. (3) is expanded with an explicit Runge-Kutta 4th

order scheme along the CGL points, as described in the previous section.

At the first step, the scaling parameter of the logarithmic barrier t is

initialized at a certain value t0 ∈ R+. In this case, all the constraints gi(x)380

are expanded in the DA function. Again, to save computation time, if

the same constraint is evaluated in multiple CGL points, only the most

violated is included.

2. The gradient of the optimality map [∇fj ] is computed and inverted with

the same procedure described in the feasibility step, to obtain the correction385

vector ∆xstep. The current point is updated:

xj+1 = xj + ∆xstep (35)

as well as the logarithmic barrier scaling factor:

tj+1 = ktj (36)

with k > 1.

3. When operating with real numbers, the logarithmic barrier tends to infinity

while approaching the constraints, preventing any step outside the feasibility390

region. The DA representation of the logarithm is a polynomial that

generally assumes finite values on the feasibility boundary (unless the

expansion point lies exactly on the boundary). Thus, the computed ∆xstep
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may turn out to point xj towards an infeasible region. To avoid this, the

constraints are evaluated at the new point: if the new point is feasible,395

the next iteration restarts from step 1; if not, a golden-section search is

performed along the segment xj –xj+1 until feasibility is attained.

The optimality step ends when the step size goes below a predefined tolerance

(and the solution found is flagged as optimal), or when a maximum number of

iterations is reached. In the latter case, the algorithm achieves a suboptimal,400

though feasible, solution and a warning is issued.

3.1. Expansion Order Selection

To properly select the DA expansion order, trading between precision and

computational performance, some preliminary tests on the DA representation of

the objective function were carried out. The numerical solution obtained on a405

grid spanning the entire optimization domain was compared with the solution

computed by evaluating the Taylor polynomials. Expansion orders from 2 to

15 were tested, with different expansion points and maneuver cases. Once a

predefined relative accuracy threshold of 1% is selected, the effective area is

defined as the part of the domain in which the error between the polynomial410

expansion and the numerical evaluation is within the threshold.

It is observed that increasing the expansion order leads to a more accurate

representation of the objective function around the expansion point (and that

proves the correct implementation of the DA computation), but without a

significant increment of the size of the effective area (see Figure 4, in which a415

comparison between order 2 and 15 is presented). This is due to the peculiar

shape of the objective function, which shows subtle changes of slope and makes

its global representation difficult to obtain [32]. In an optimization context, it

is more efficient to quickly catch the global features of the objective function,

avoiding local minima, and then to refine the solution locally toward the optimum:420

for all the simulations presented in this paper, the lowest possible order (i.e.

order 2) is adopted.
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Figure 4: Effective area of the DA representation with respect to the numerical solution

obtained with real numbers computation. The color inside indicates the error (in logarithmic

scale) of the DA representation with respect to the real number evaluation.

4. Numerical Results

Different numerical simulations of a realistic lunar landing scenario are carried

out in this section to estimate the performance of the proposed algorithm. For425

the sake of comparison, the lander model and the nominal landing trajectory

adopted hereafter are taken from a previous work [32]. The nominal lander

characteristics are summarized in Table 1.

Table 1: Lander architecture assumptions.

Quantity Value Units

mdry 790 kg

Tmin 1000 N

Isp 325 s

Tmax 2320 N

Imax 1000 kg m2

MCmax 40 N m

4.1. Single optimization

In Figure 5 the optimization process for 4 retargeting cases is shown in detail.430

Each image represents the optimization domain, with constraints boundaries and
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the objective function. The optimization steps are depicted in black. The initial

conditions are always the same, summarized in Table 2. In each case, the final

target position vector rf is changed. Figure 5a is representative of what it could

be a standard large retargeting for HDA purposes; case 5b corresponds to a435

large 2 km crossrange diversion coupled to an extreme brake (−2 km downrange),

while the same, but with a downrange extension (+2 km) is shown in Figure 5c.

Finally, a large diversion in altitude is displayed in the case 5d.

The DA optimization algorithm efficiently detects active constraints and

reaches the global optimum solution, even in cases of small feasible area and440

multiple active constraints, such as the case of Figure 5c. Looking at the different

iterations, it can be seen how the system tracks effectively the boundaries of the

feasible domain. The optimal solution is, in most of the cases, on the edge of the

feasibility, limited by the maximum available thrust. This result is not surprising,

taking into account the bang-bang structure of the true optimal control problem445

the optimal polynomial trajectory tends to.

These results were compared with the solutions computed with a general-

purpose nonlinear optimization software (SNOPT): in the worst case observed,

the difference between the two solutions was less than 0.2 %.

4.2. Attainable area450

A Monte Carlo (MC) simulation is exploited to assess the algorithm per-

formance in terms of attainable landing area and fuel consumption. A series

of 1× 105 uniformly distributed random diversions in the range of ±4000 m

along both downrange and crossrange axes is ordered from the initial condi-

tions summarized in Table 2. The attainable landing area can be obtained by455

correlating the optimization results with the coordinates of the targets landing

sites, as shown by Figure 6a, in which only the feasible points (satisfying all the

constraints) are shown.

The system is able to compute a feasible landing path in an approximately

circular landing area of radius larger than 2300 m centered at the nominal460

landing site (at the origin of the figure), performing better than required in
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Figure 5: Single optimization cases. The algorithm effectively tracks the boundaries of the

feasible area and efficiently detects the activation of different constraints at each iteration.
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Figure 6: Attainable area and fuel consumption comparison. Colored areas denote feasible

solutions, white zones are infeasible.
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Table 2: Lunar landing nominal case (e denotes the vector of Euler angles).

Quantity Value Units

r0 [2000,−1062.27, 0] m

rf [30, 0, 0] m

v0 [−35, 30, 0] m s−1

vf [−1.5, 0, 0] m s−1

e0 [−55, 0, 0] deg

ef [−90, 0, 0] deg

m0 865 kg

similar scenarios [44, 45]. In Figure 6b the results of the same simulation

obtained with the modified compass search algorithm [32] are reported for

comparison. The achievement of the true optimal solution by the new method is

further confirmed by the shape of the fuel consumption function: the absence465

of the sudden variations visible in the compass search results indicates that the

algorithm avoids stagnation in local minima.

4.3. Full landing Monte Carlo

To assess the robustness and the flexibility of the proposed approach, a MC

analysis (with 1000 runs) of a full lunar landing with a retargeting maneuver is470

carried out. Taking again the case of Table 2 as reference scenario, deviations

on initial position, velocity, attitude, and mass are introduced to assess the

robustness of the proposed approach to uncertainties; a large dispersion on

the horizontal components of the initial position is assumed to account for

uncertainties about the requested retargeting. See Table 3 for a recap of the475

assumed deviations.

During the maneuver, the inertia drops linearly with the mass from the initial

value toward the minimum [845 675 675] kg m2, correspondent to the dry mass

mdry = 790 kg. While in the simulation of lander dynamics and attitude control

the actual values for mass and MoIs are considered, in the guidance algorithm we480
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set Imax = 1000 kg m2 at all times. This value encompasses the whole envelope

of assumed initial mass (6σ) and ensures the satisfaction of the attitude control

constraint with a certain confidence (also tunable accordingly to mission-specific

requirements).

Errors in state estimation and actuation disturbances are included to test485

the capability of the guidance algorithm to cope with realistic scenarios. To ease

the comparison, the same case of [32] is adopted. Here, a brief summary of the

introduced disturbances is given: please refer to [32] for a detailed description.

During the diversion maneuver, the attitude is assumed to be estimated by a

simple integration of a simulated inertial measurement unit (IMU), while the490

presence of an optical relative navigation system is taken into account by adding

realistic errors to the estimation of the position and velocity. A 10 mm thrust

misalignment (in a random direction for every MC sample) with respect the

spacecraft CoM, and PWPF modulation of control torques by attitude thrusters

are included as well to take into account disturbance torques. The guidance495

system updates the trajectory every 5 s, to cope with navigation and control

errors.

Table 3: Lunar landing Monte Carlo initial dispersion.

Condition Nominal value 1σ UoM

Initial mass m0 865 ±10 kg

Initial MoIs I0 [931 762 762] ±[11.5 11.5 11.5] kg m2

Initial position r0 [2000 − 1060 0]T ±[30 600 600]T m

Initial speed v0 [−35 30 0]T ±[0.5 0.5 0.5]T m s−1

Initial pitch angle θ0 −55 ±5 deg

Initial yaw angle ψ0 0 ±5 deg

Figure 7 shows the obtained trajectories, while Figures 8 and 9 show the

resulting horizontal dispersion in terms of position and velocity, summarized,

for the vertical component, in Figures 10 and 11. All the samples lead to a500

feasible and successful landing; the accuracy at touchdown is compatible with
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Figure 10: Full landing MC simulation: final altitude distribution.

HDA requirements, with an ordered diversion larger than what is expected

in a real mission. Uncertainties at the end of the maneuver have the same

order of magnitude of the assumed navigation error, comparable in size to a

lander footprint [46]. This result underlines the primary role of the relative505

navigation system and confirms the outcomes of [32]. The proposed guidance

algorithm is capable to drive effectively the system to the desired final states:

drift and actuation errors are efficaciously counteracted by regular trajectory

updates. Final uncertainty at touchdown is essentially due to navigation errors

only, which affect the values of the initial and final states given as input to the510

guidance. This result conforms to existing literature, which identifies navigation

inaccuracies as the main source of landing error [47]. This is not unexpected,

as the observed performance demonstrates that the guidance works as desired,

and it is basically as precise as the data which is fed with. The final attitude

distribution is summarized in Figures 12 and 13: the final spacecraft attitude515

shows a very narrow dispersion within 1◦ around the vertical, the same order

of magnitude of the attitude control error, enabling an actual and safe hazard

avoidance maneuver.

The inclusion of constraint (18) ensures that, for a feasible maneuver, the

attitude control system is capable to steer the lander toward the desired target.520

A further verification is performed on the angular rate during the maneuver, as

too high values could be detrimental especially for certain attitude determination
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Figure 11: Full landing MC simulation: final vertical velocity distribution.

Figure 12: Full landing MC simulation: final pitch angle distribution.

Figure 13: Full landing MC simulation: final yaw angle distribution.
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Figure 14: Angular rate trend, example for a [+2000,+2000]m diversion.

and navigation sensors. The maximum rotational speed increases for larger

requested diversion. Figure 14 reports the trend for a [+2000,+2000] m retar-

geting, including all the disturbances assumed in the Monte Carlo simulation,525

which can be considered representative of a worst case scenario. As expected,

the highest values are achieved at the beginning and at the end of the maneuver,

when the diversion is commanded and when the lander recovers the vertical

attitude. Nevertheless, the actual values are limited: in the whole Monte Carlo

simulation, the absolute value of the rotational rate never exceeds 8 ◦ s−1, thus530

enabling a safe landing.

4.4. Computational efficiency

The simulation of Figure 6a was also exploited to obtain an estimation of

the computation time. All the simulations were tested on a Intelr CoreTM

i7-2630QM CPU at 2 GHz of frequency.535

Figure 15 illustrates the results obtained (indicated as DA Guidance, DAG, in

the chart) compared with the modified compass search (MCS) and the problem

formulation adopted in [32]. The histogram at the top reports the time dispersion

for feasible cases. For DAG, the mean computation time is 25.23 ms with a

standard deviation (STD) of 7.16 ms. This implies a 3σ computation time below540

46.71 ms. If an infeasible retarget is ordered (Figure 15, bottom), the system

performs a fixed number of iterations until the maximum number of iterations

(which is set to 30 for the presented simulations) is reached, or until a stationary

point (with null step length) is achieved. In most cases, the algorithm stops due

to the maximum iteration limit and the computation time tends to be constant,545
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Figure 15: Monte Carlo simulation: computation time for feasible (top) and unfeasible (bottom)

cases. Comparison between differential algebra guidance (DAG) and the previous modified

compass search (MCS) formulation.

with a mean equal to 33.94 ms. The quite low dispersion (STD = 4.20 ms) is

mainly due to the cases in which a stationary point in the feasibility function is

reached. In both feasible and infeasible cases, the algorithm is very fast, with a

stable computation time.

Looking at the comparison with the previous formulation, DAG resulted550

significantly faster in both feasible and infeasible cases, with a gain of ∼50 % in

the former and ∼65 % in the latter. Moreover, the dispersion in the computation

time is noticeably lower for the DAG with respect to the MCS. This latter

property is connected with the number of iterations achieved, and it is particularly

significant, for it denotes a better numerical stability of the the method, and a555

more predictable performance once ported on flight hardware.

Even if the actual implementation of DAG on a suitable on-board computer

is beyond the scope of this work, preliminary considerations can be made

about its possible real-time performance. In fact, flight processors run at

significantly lower frequencies (1 order of magnitude) with respect to standard560

workstations. Moreover, differences in instructions sets and memory access

speed make erroneous even simply scaling the runtime by the clock speed as a
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method to estimate flight performance: an actual scaling factor of two orders of

magnitude between desktop and flight hardware is reported in literature [27].

This factor would entail a rough estimate of 2.5 s for the mean runtime of DAG565

in flight, compatible with the 5 s update frequency considered in the landing

maneuver simulation. Furthermore, it should be considered that the algorithm

implementation adopted in this work was not optimized for real-time computing,

and DACE is designed as a DA library for general purpose computation, which

involves a certain amount of overhead. Consistent opportunities for runtime570

optimization are expected to be available for in-flight implementation.

Numerically, the operation of map inversion involves the inversion of the linear

part of the DA map, followed by a fixed point iteration process to recover the high

order coefficients of the Taylor expansion. On real-time hardware, the process of

matrix inversion can be time and memory consuming, requiring the temporary575

storing of intermediate products of the computation. For the case under exam,

which deals with only 2 DA variables, the operation requires the inversion of

a 2 × 2 matrix, which is expected to have a negligible impact on the overall

computation. Moreover, in previous studies, a real-time tailored implementation

based on DACE proved effective in running a high-order numerical extended580

Kalman filter (involving the inversion of two 6× 6 matrices for each time step)

at up to 3 Hz on low-performance, flight representative hardware [48].

Taking into account all the possible improvements in code optimization, the

proposed solution appears to be promising for on-board, real-time computation.

5. Conclusion585

A semi-analytical method for on-board generation of near optimal trajectories

for planetary landing has been improved with an ad hoc optimization algorithm

based on differential algebra, together with a new formulation of trajectory

constraints that makes their computation more efficient and the optimization

more robust. The representation of the objective and constraints functions as590

DA objects opens up the possibility to exploit additional information, such as
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their sensitivity to the optimization variables, during the optimization process

to quickly estimate the position of the nearest stationary point. Consequently,

the optimal solution is found in a low number of iterations. The optimizer

has been extensively tested and has showed the capability of finding optimal595

solutions with an attainable area larger than typically required in real missions.

Moreover, the proposed approach turned out to be very fast, as it relies on

simple algebraic operations between coefficients of DA variables. The robustness

of the proposed method was assessed by a Monte Carlo closed loop simulation

including dispersion due to control and navigation errors representative of a600

real system. The potentially high frequency of the trajectory update makes the

algorithm an ideal candidate for a real-time, closed-loop guidance.

Appendix A. Rotational rate vector computation

In this appendix, the procedure adopted to obtain the rotational rate vector,

expressed in Eq. (20), from Eq. (19) is reported. The problem of Eq. (19) is to605

find a vector ω such that:

a× ω = c (A.1)

where c = ȧ·a
‖a‖2 a− ȧ. The general solution to the vector cross product equation

is

ω = −a× c

‖a‖2
+ ka (A.2)

However, the assumption of null rotation rate around the roll axis, which is

parallel to the control acceleration a, entails ω ⊥ a and k = 0. Thus, Eq. (A.2)610

can become

ω = −a× c

‖a‖2
=

[(
ȧ · a
‖a‖2

)
a− ȧ

]
× a

‖a‖2
=

a× ȧ

‖a‖2
(A.3)
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